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PACS. 23.60.+e — « decay.
PACS. 25.70.Gh — Compound nucleus.

Abstract. — Angular distributions of a-particles emitted by oriented nuclei are considered
theoretically. Exact kinematical relations between the values of directional distribution coeffi-
cients have been found for the case when I; > I;. Another class of the relations is found for
the a-decay of compound nuclei in nuclear reactions.

Emission of a-particles in the decay of deformed oriented nuclei, i.e., nuclei with a prefer-
ential spin direction in space, should be anisotropic. This was first theoretically predicted by
Hill and Wheeler [1] who argued that in a nucleus with a deformed Coulomb barrier, having
non-uniform barrier height and width, the tunnelling probability becomes direction depen-
dent. Later theoretical works [2-5] have shown that anisotropy of a-emission is determined
not only by the deformed barrier but also by the nuclear structure. Recently, extensive high-
resolution measurements of angular distributions in a-decay of oriented odd-mass nuclei have
been reported [6-10]. In the experiments, a combination of production by heavy-ion reactions,
on-line separation, and on-line implantation and orientation at low temperatures [6] has been
successfully applied for studying the a-transitions in odd-mass isotopes of At, Rn [7,11], Bi [§],
Pa and Fr [9]. In all cases remarkably pronounced and strongly varying from isotope to isotope
a-emission anisotropy has been revealed. The experimental angular distributions have been
analyzed by expanding in terms of Legendre polynomials; the coefficients of the expansion
have been compared with those calculated in various theoretical models. The comparison
reveals that the angular distributions can provide very interesting and important information
about both the nuclear structure and the properties of the deformed Coulomb barriers.

Although the dynamics of the anisotropic a-emission is still not completely understood,
in this letter we are concerned not with dynamical but rather with kinematical properties of
the directional distribution coefficients. We shall show that for some of the transitions these
coefficients are not independent but related by simple equations. The derived equations are
exact in a sense that they do not depend on the dynamics of the decay and therefore they
should be fulfilled in any theoretical model and also in experiment. Thus they may be useful
for testing the calculations and for checking the consistency of experimental analysis.

(*) E-mail: nkabach@mail.ru

© EDP Sciences



648 EUROPHYSICS LETTERS

A general expression for the angular distribution of a-particles emitted from oriented
nuclei has been derived by Krane [11] on the basis of a density matrix and statistical tensor
formalism. For an ideal detector it may be written in the following form:

W(0) =1+ ApByPy(cos0). (1)
k0

Here 6 is the emission angle relative to the nuclear orientation direction chosen as z-axis,
Py (z) are the Legendre polynomials, and By describe the nuclear orientation. The Ay are the
directional distribution coefficients which contain information on the a-transition. They may
be written in the form [11]

>op.navay cos(or — o) (L, L', It I)
>Lai 7
where I; and Iy are the nuclear spins in the initial and the final state, respectively, a; and

oy, are the amplitude and phase of the a-wave with angular momentum L, and F{' are the
F-coefficients modified for a-decay [11]:

Ay = (2)

“n A ’
F]?(L,L/7[f7]i) = (_1)Ii+1f+k:LL/Ii(LO,L/O | I{ZO){L L k} (3)

I L I

Here (L0, L'0 | k0) is a Clebsch-Gordan coefficient, I = /2T + 1, and the standard notation
for the 65 symbol is used. Since parity is conserved in a-decay only even L or only odd L
contribute to the sums in (2) depending on parities of the initial and the final nuclear states.
The k-values are always even and k < 21;.

Usually, from the analysis of the experimental angular distributions the coefficients Ay, are
deduced which are then compared with the theoretical predictions based on some particular
model of a-decay. In both experimental and theoretical analysis the directional distribu-
tion coefficients Ay are considered as independent. However, as we show below, this is not
always true.

Consider the following sum:

kmax
> E)ITML(LM;, L= M; | KO)F (L, L' I, I) = I7 (Ie Mg, LiM; | LO) (It My, M; | L'0). (4)
k=0

The last equation is obtained using the known relations between Clebsch-Gordan and 67
coefficients (see eq. (8.7.5.31) in [12]). We note that if I; > I¢ then for any M; > I; the
right-hand side of eq. (4) turns to zero independently of L, L’ due to the rule of projections
in the Clebsch-Gordan coefficients. Therefore, the following equation holds:

kmax
> (=0)EML(LM, I — M | k0) Ay =0 (5)
k=0
or
LY (=) ML (LM, 1 — M; | k0)Ay = 0 (6)
k#£0

for each M; > I;. The number of such relations is I; — I;. Equation (6) is our final result.
It means that if I; > It the directional distribution coefficients are not independent. They are
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related by I; — It equations. The equations are exact and do not depend on the dynamics of
the a-decay. They are valid for any parity of the initial and the final states.

The existence of relations (6) has a simple physical reason. Consider the a-decay transition
I; — Iy with I; > I;. Suppose that in the initial state only the maximal projection of the
nuclear spin is populated, namely M; = I;. Since the projection of the total angular momentum
should be conserved in a-decay, the final state consisting of the residual nucleus and the
a-particle should also have the total angular momentum projection equal to I;. Consider
emission of a-particles along the z-axis. Then the orbital motion of the a-particle does not
give any contribution to the angular-momentum projection. Only the spin of the residual
nucleus can contribute. But the maximal possible projection of the final spin is It which is
less than [;. Thus it is impossible to satisfy the conservation law for the projection of the total
angular momentum. Therefore, the intensity of the a-emission along the nuclear orientation
direction should be zero. This leads to the equation

W(0=0)=1+) AxBj =0, (7)
E#£0

We remind that the orientation parameters By, are defined as follows [11]:

By =15y (1) "M(LM;, I — M; | kO)pay, (8)
M;

where pys, are populations of the corresponding magnetic substates. In the above-considered
case only one substate is populated, p;, = 1. Thus in this case

By = (LI, I — I; | kO). (9)

Substituting the orientation (9) in eq. (7) we get relation (6) for the case M; = I.
As an example, consider the decay 5/27 — 3/ 27, The selection rules imply that only
L = 2,4 contribute and kyax = 4. In this case eq. (6) reduces to

1+5\/7A2+\/7A40 (10)

For another transition 7/2% — 3/2% (kpax = 6) two different equations exist (for M; = 7/2

and 5/2):
7 7 1
1+\/§A2+\/11A4+\/33A60 (11)
1 1 1
141/ =Ay — 131/ == A4 — 51/ == Ag = 0. 12
Ty gz T By A 0y ggde =0 (12)

In both particular cases considered only one directional distribution coefficient is independent,
for example As. Others may be found using the above equations. Note that eq. (11) is
valid also for the 7/2 — 5/2 transitions, and egs. (10)-(12) are, in fact, independent of the
parities of the initial and the final states. Unfortunately, we have not found any published
experimental data for the case I; > It in order to demonstrate how eq. (6) works. In the
majority of papers [6-10] the angular distributions for favoured transitions with I; = Iy have
been measured and analyzed.

The basic equation (6) is fulfilled for any spin of the initial state, integer and half-integer.
Below we derive another independent equation which is valid only for integer spins. Con-
sider again the sum (4). If the initial spin is integer, one can assume M; = 0. In this case the

and
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right-hand side of the equation turns to zero if I; + It + L is an odd number. This leads to
the equation
14+ (=)' L(L0, 1,0 | k0)Ag = 0. (13)
k0

It is clear that eq. (13) exists due to parity conservation in a-decay. As an example, consider
the a-transition 2% — 27. In this case the angular distribution is determined by two coeffi-
cients, A and A4. However, only one of the two is independent; the second may be found
from the relation (13) which in this case reads

/10 2
1—4/—=A4 —As=0. 14
7 2+3\/; 4=0 (14)

In fact, this equation is valid for any 2t — I transition if only If + 7 is odd. Obviously,
eq. (13) cannot be applied in studying the a-transitions from oriented nuclei which are of odd
mass and therefore of half-integer spin. However, it may be useful in analysis of a-decay of
compound nuclei produced in nuclear reactions. It is well known that the compound nuclei
may be strongly oriented [13,14] and therefore the emitted a-particles may be anisotropic.

Since the derived equations are purely kinematical and do not depend on the dynamics of
the a-decay, they are valid for the emission of any zero-spin particles. The found relations
may be useful for checking the theoretical calculations or serve as a test of the consistency
of experimental data. Finally, we note that similar exact relations exist between coefficients
which determine the angular distributions and spin polarization in the decay with emission of
spin-(1/2) particles. They have been found and discussed in atomic Auger decay (see [15,16]
and references therein).
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