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Abstract
The angular distribution of two emitted electrons in the double Auger process in
atoms has been theoretically investigated. In particular, the double Auger decay
of a 1s vacancy in Ne and a 2p vacancy in Ar is considered. In analogy with
double photoionization, we present a convenient parametrization of the angular
correlation patterns for all possible angular momenta of the emitted electron
pair. As a limiting case we investigate the angular correlations within the shake-
off mechanism of the double Auger process. We also consider the influence of
initial orientation of the vacancy on the electron angular distributions (circular
dichroism).

1. Introduction

When an inner-shell vacancy is produced in a light atom, for example, by photoionization,
its relaxation usually occurs via an Auger transition—a radiationless process in which one of
the outer electrons fills the vacancy and another is ejected with energy equal to the transition
energy. However, in some cases (5–20% of all transitions) two electrons are simultaneously
emitted, sharing the transition energy. This process is usually referred to as a double Auger
(DA) decay. In resonant Auger decay the similar process is often called ‘shake-off’ indicating
one of the possible mechanisms of two-electron emission. Because the Coulomb operator
responsible for the Auger decay is a two-particle operator, DA decay is forbidden within the
independent particle model (frozen atomic structure approximation). Its occurrence, therefore,
is a consequence of electron–electron correlations, and the study of DA decay may be used as
a testing ground for theoretical models which incorporate such correlations. A similar goal is
pursued in studying another process with two-electron emission—the double photoionization
(DPI) process. In this context, the advantage of DA decay is that a broader variety of two-
electron continuum quantum numbers is available in the DA transition. In comparison, DPI is
restricted by the dipole selection rules.

The first experimental evidence for a DA process was reported by Carlson and Krause
(1965) for the K–LLL transition in Ne. Since then the DA process in ions and the analogous
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resonant DA process in atoms (resonant shake-off ) have been studied by various experimental
techniques: photoelectron spectroscopy (Carlson and Krause 1966, Becker et al 1986, 1989,
Heimann et al 1987), multiply-charged photoion yield measurements (Ueda et al 1991),
photoion–Auger-electron coincidence measurements (Levin et al 1990, Tamenory et al 2002
and references therein), the photoelectron–ion coincidence method (Kämmerling et al 1992,
Kanngießer et al 2000, Brünken et al 2002 and references therein). All these experiments
concern the total probability of the DA decay, and most measurements deduce the probability
only indirectly, mainly from the charge distribution of the photoions. Only quite recently first
coincidence measurements of the two emitted electrons were reported for DA decay induced
by K-capture (Hindi et al 1996) and by photoionization (Viefhaus et al 2002, 2004, Viefhaus
2003). Such measurements are much more informative since not only the total yield, but also
the energy sharing (Hindi et al 1996, Viefhaus et al 2002) and even the angular correlations
between emitted electrons (Viefhaus et al 2004) are measured.

Theoretically, mainly total probability was considered within the shake-off model based
on the sudden perturbation approach (Carlson and Krause 1965, Krause and Carlson 1967,
Parilis 1969, Kochur et al 1995). More refined calculations within many-body perturbation
theory (MBPT) including calculations of the energy-sharing distribution were only done for
the DA transitions in Ne 1s−1 → 2s−22p−1 (Amusia et al 1992) and Kr 3d−1 →4s−14p−2

(Kilin et al 1997) as well as for the resonant DA transitions from the Kr 3d−15p resonance
(Amusia et al 1993). A special problem of post-collision interaction in the DA process
was treated theoretically by Sheinerman (1998). To the best of our knowledge, the angular
correlations between two emitted electrons in the DA process have only been calculated by
Amusia et al (1992) for the Ne 1s−1 → 2s−22p−1 transition.

In the present paper, we consider theoretically the general properties of the angular
distributions of Auger electrons emitted in DA decay. Our work was stimulated to a great extent
by the development in theoretical analysis of angular correlations between two electrons in DPI.
Here two directions of theoretical investigations are clearly distinguished (see, for example,
the review by Briggs and Schmidt (2000)). On one hand, there are ab initio calculations
of triple-differential cross sections (TDCS) within elaborate theoretical models (see, e.g.,
Kheifets and Bray (2002) and Kazansky et al (2003) and references therein), but on the other
hand, a very useful parametrization of the DPI amplitude and the TDCS has been suggested
(Huetz et al 1991, Malegat et al 1997, Cvejanović and Reddish 2000). The usefulness of the
parametrization is due to the fact that there is a great variety of angular correlation patterns
measured in different experimental geometries which in fact can be all described by a small
number of parameters (complex gerade and ungerade amplitudes). Moreover, these parameters
are only slowly varying functions of the photon energy, which makes it easy to compare the
experimental data obtained by different groups at different energies. The main goal of our
work is to work out a similar parametrization for the angular correlations in DA decay. Based
on the experience with the DPI studies we hope that such parametrization will be useful for
the analysis of the experimental data as well as for the planning of new experiments.

2. General expression and parametrization for the angular distribution of two
emitted Auger electrons

2.1. Derivation of the basic formulae

The theory of DA decay is based on a two-step model, where direct triple photoionization is
negligible and the amplitude of the process is treated as a product of the hole-creation and
DA decay amplitudes. In this model, a general expression for the angular distribution of two
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Auger electrons emitted in DA decay has been derived by Amusia et al (1992) within the
framework of the density matrix and statistical tensor formalism (see, e.g., Blum (1996) and
Balashov et al (2000)). However, this expression is rather complicated and it can hardly be
used for the analysis of experimental data without detailed and laborious calculations. Below,
we re-derive the general expression in a form which allows a simple parametrization. We
start from the decay of an unpolarized ionic state with an inner-shell vacancy (influence of
vacancy polarization will be discussed in section 3). In the following, we use an LS-coupling
approximation which is appropriate for light and medium atoms. A double Auger transition
from the initial |αiLiSi〉 state to the final |αf Lf Sf 〉 state with emission of two electrons with
momenta k1 and k2 and spin projections µ1 and µ2 is described by the Auger amplitude

MMLi
MLf

= 〈
αf Lf MLf

Sf MSf
, k1µ1, k2µ2

∣∣V ∣∣αiLiMLi
SiMSi

〉
, (1)

where V is a Coulomb operator, ML and MS are the projections of the corresponding angular
momenta and αi and αf denote all other quantum numbers which are necessary to specify the
state. Expanding the electron wavefunctions in partial waves and coupling the orbital angular
momenta and spins of the emitted electrons in the total orbital angular momentum (L) and
total spin (S) of the electron pair, respectively, we get

MMLi
MLf

=
∑

S

ξS
(
µ1µ2MSf

;MSi

) ∑
�1�2LML

(
Lf MLf

, LML

∣∣LiMLi

)
×Y

�1,�2
LML

(n1, n2)L̂
−1
i 〈αf Lf , (ε1�1, ε2�2)L‖V S‖αiLi〉, (2)

where n1 and n2 are the unit vectors in the directions k1 and k2, respectively, ε1 and ε2 are the
energies of the emitted electrons, �1 and �2 are their orbital angular momenta, L̂ ≡ (2L+1)1/2,(
Lf MLf

, LML|LiMLi

)
is a Clebsch–Gordan coefficient and

Y
�1,�2
LML

(n1, n2) =
∑

m1,m2

(�1m1, �2m2|LML)Y�1m1(n1)Y�2m2(n2), (3)

are the bipolar harmonics (Varshalovich et al 1988). Since the Coulomb operator V does not
contain spin, the spin part of the matrix element (1) is separated in the factor

ξS
(
µ1µ2MSf

;MSi

) =
∑
MS

(
1
2µ1,

1
2µ2

∣∣SMS

) (
Sf MSf

, SMS

∣∣SiMSi

)
× 〈

Sf ,
(

1
2

1
2

)
S : SiMSi

∣∣ I ∣∣ SiMSi

〉
, (4)

where I is a unit operator. The reduced matrix element in (2) still depends on S since the
symmetry of the orbital part of the two-electron wavefunction depends on S (in general,
coefficients of fractional parentage depending on S may also be included in this matrix
element).

The probability of emitting two electrons in the directions n1 and n2 can be written as

dW

dε1 dn1 dn2
= 2πL̂−2

i Ŝ−2
i

∑
MLi

MSi

∑
MLf

MSf
µ1µ2

∣∣∣MMLi
MLf

∣∣∣2
. (5)

Substituting the amplitude (2) into (5) and summing over projections of angular momenta and
spins we get

dW

dε1 dn1 dn2
= 2πL̂−2

i Ŝ−2
i

∑
SL

FSL, (6)



1882 A N Grum-Grzhimailo and N M Kabachnik

where

FSL =
∑
ML

∣∣fSLML

∣∣2
, (7)

fSLML
= L̂−1

∑
�1�2

Y
�1,�2
LML

(n1, n2)〈αf Lf , (ε1�1, ε2�2)L‖V S‖αiLi〉. (8)

The probability (6) is a sum of partial probabilities FSL corresponding to different terms LS

of the outgoing pair of Auger electrons.
According to the selection rules for the Coulomb operator, the orbital angular momentum

L and parity π = (−1)�1+�2 of the emitted electron pair are restricted by the conditions

|Li − Lf | � L � Li + Lf , π = πiπf , (9)

where πi and πf are the parities of the initial and final ionic states, respectively. Besides,
S = 0 or 1. Restrictions (9) limit the number of terms in sum (6). Since the total wavefunction
of the final state of the emitted pair should be antisymmetric with respect to a permutation of
the two electrons, the matrix elements should satisfy the relation

〈αf Lf , (ε1�1, ε2�2)L‖V S‖αiLi〉 = (−1)π+L+S〈αf Lf , (ε2�2, ε1�1)L‖V S‖αiLi〉. (10)

Equation (6) is bilinear in bipolar harmonics and therefore is impractical for
parametrization of the angular correlation function. To proceed further we use an elegant
method suggested recently by Manakov et al (1996) which allows reduction of bipolar
harmonics of higher ranks of internal spherical functions by expressing them in terms of
‘minimal’ harmonics. (A similar reduction has been given independently by Malegat et al
(1997).) Using this method one can obtain a convenient parametrization of the amplitudes
(8). Summing over ML analytically in equation (7), one obtains the probabilities FSL for any
LSπ final state of the emitted electrons.

Consider, for example, emission of Auger electrons in a 2S+1Po state. The amplitude (8)
in this case takes the form

fS1M = (
√

3)−1
∑
�1�2

Y
�1,�2
1M (n1, n2)〈αf Lf , (ε1�1, ε2�2)P

o‖V S‖αiLi〉. (11)

Due to parity selection rule, only �2 = �1 ± 1 contribute to the sum in (11). The bipolar
harmonic in this equation can be reduced to the form (see equation (C.2) of Manakov et al
(1996))

Y
�1,�2
1M (n1, n2) = − 1

4π

√
3

�max

[
(−1)�1P

(1)
�1

(cos θ12)n1M + (−1)�2P
(1)
�2

(cos θ12)n2M

]
. (12)

Here and below P
(k)
� (x) = dkP�(x)/dxk , where P�(x) is the Legendre polynomial; θ12 is the

angle between the two emission directions and n1M and n2M (M = 0,±1) are the spherical
components of the unit vectors n1 and n2. Introducing the amplitudes

bS
j (θ12) = 1

4π

∑
�1�2

1√
�max

(−1)�j +1P
(1)
�j

(cos θ12)〈αf Lf , (ε1�1, ε2�2)P
o‖V S‖αiLi〉,

j = 1, 2, (13)

where �max = max{�1, �2}, we can present fS1M , equation (11), as

fS1M = bS
1 (θ12)n1M + bS

2 (θ12)n2M, (14)
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and the corresponding probability (7) as

FSPo =
∑
M

|fS1M |2 = |b1|2 + |b2|2 + 2Re
[
bS

1 bS∗
2 (n1 · n2)

]
. (15)

We omit the argument θ12 in the amplitudes for brevity.
As follows from (10), a permutation of the two electrons leads to the relation bS

1 (2, 1) =
(−1)SbS

2 (1, 2). In analogy with the DPI (Huetz et al 1991, Briggs and Schmidt 2000) it is
convenient to introduce combinations of the amplitudes gerade

(
aS

g

)
and ungerade

(
aS

u

)
with

respect to the permutations:

aS
g = 1√

2

(
bS

1 + (−1)SbS
2

)
, aS

u = 1√
2

(
bS

1 − (−1)SbS
2

)
. (16)

From (15) and (16) we obtain for the angular correlation function in the 2S+1Po states of the
outgoing electron pair

FSPo = ∣∣aS
g

∣∣2
(1 + (−1)S cos θ12) +

∣∣aS
u

∣∣2
(1 − (−1)S cos θ12), S = 0, 1. (17)

In the same way, expressions for the probability of emission FSL for other LSπ can be
obtained. The results are presented in table 1 for L � 3 with the corresponding amplitudes
listed in the appendix.

Let us discuss the obtained results using the 2S+1Po case (17) as an example. First, we note
that all probabilities depend only on the relative angle of two-electron emission as it should be
since the initial ionic state is unpolarized. It is easy to check that all kinematical selection rules
(A)–(I) of Maulbetsch and Briggs (1995), pertinent to the process leading to a two-electron
continuum state, are fulfilled. For example, selection rule (C) claims that for k1 = −k2 states
with (π + S) odd do not contribute to the process. Indeed, in this case ε1 = ε2, hence aS

u = 0
and, as follows from (17), at θ12 = 180◦ (back-to-back emission) only S = 1 contributes.
Similarly, selection rule (D), claiming that for k1 = k2 triplet states do not contribute to the
process, is obviously fulfilled in the case of equation (17) and all other cases from table 1. It is
significant that the validity of the all kinematical selection rules of Maulbetsch and Briggs is
provided not by the amplitudes aS

g and aS
u but by the kinematical factors in complete analogy

with the DPI (see, e.g., Briggs and Schmidt (2000)). As in the latter case, the amplitudes aS
g

and aS
u describe the dynamics of the electron–electron correlations and the squares

∣∣aS
g

∣∣2
and∣∣aS

u

∣∣2
may be called the correlation factors. This separation into kinematical and dynamical

factors in DA process is not so obvious as in DPI, since both factors depend on one and the
same angle θ12, the relative angle of the emission of two Auger electrons. (We recall that
in DPI the kinematical factor depends on the angles between the emission directions and
the photon polarization.) Nevertheless, a similarity of the experimental angular correlation
patterns observed for DA decay (Viefhaus et al 2004) and for the DPI of He strongly supports
the interpretation of the values

∣∣aS
g

∣∣2
and

∣∣aS
u

∣∣2
as the correlation factors determined mainly by

the interaction of the two continuum electrons.
As is well known, in DPI the correlation factor primarily reflects the electron–electron

repulsion; it should have a maximum at θ12 = 180◦ (electrons emerge in opposite directions)
and vanish at θ12 = 0 (electrons emerge in the same direction). From fits to numerous
experimental DPI data and partly from theoretical considerations it has been shown that the
correlation factor may be accurately approximated by a Gaussian function (see Briggs and
Schmidt (2000) and Cvejanović and Reddish (2000) for a review of the data up to 2000 and
Kheifets and Bray (2002) for more recent results):

C(θ12) ≈ a exp
(−4 ln 2(θ12 − 180◦)2

/
θ2

0

)
. (18)
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Figure 1. General patterns for the angular distribution of the second electron in the DA process
when the direction of emission of the first electron n1 is fixed, for different LSπ -symmetries of
the emitted pair. The case ε1 = ε2 is chosen (see the text).

The parameters of the distribution, the strength a and the full-width at half-maximum θ0,
depend only on the electrons’ energy. The behaviour of the parameters as a function of the
total energy of the two electrons and energy sharing is rather well known at least in DPI of
He (Cvejanović and Reddish 2000). Because of the similarity of angular distributions for DPI
and DA decay, as a first attempt it is reasonable to also use similar parametrization for the
correlation factors in the DA process. In figure 1 we show the calculated angular patterns for
DA decay for various LSπ calculated for equal energy sharing of two emitted Auger electrons.
The correlation factor

∣∣aS
g

∣∣2
was approximated by the Gaussian function (18) with the width

θ0 = 113◦ and the strength a = 1 for all LSπ symmetries. This value of θ0 was taken as
in Viefhaus et al (2004) from empirical interpolation based on fitting all available He DPI
data at different dynamical conditions to the energy of 163 eV, equally shared between the
outgoing electrons (Cvejanović 2003). The energy of 163 eV corresponds to the double Auger
decay of the 2p−1 2Po vacancy in Ar to the 3p−3 configuration. As seen from the figure, both
kinematical and correlation factors are important in producing the angular correlation pattern.
For example, in the case of 1Po emission (see equation (17)), zero at θ12 = 180◦ is determined
by the kinematical factor, while zero at θ12 = 0 is due to the correlation factor (Coulomb
repulsion). As is clear from symmetry considerations, all patterns are symmetric with respect
to transformation θ12 → −θ12.



Angular correlation patterns in double Auger decay 1885

Table 1. Parametrization of the angular correlation patterns for DA emission for different
symmetries LSπ of double electron continuum. Corresponding expressions for aS

g and aS
u are

given in the appendix.

State Angular correlation function FSL

1,3Se
∣∣∣aS

g

∣∣∣2
δS0 +

∣∣aS
u

∣∣2
δS1

1,3Po
∣∣∣aS

g

∣∣∣2
(1 + (−1)S cos θ12) +

∣∣aS
u

∣∣2
(1 − (−1)S cos θ12)

1,3Pe
[∣∣∣aS

g

∣∣∣2
δS1 +

∣∣aS
u

∣∣2
δS0

]
sin2 θ12

1,3Do
[ ∣∣∣aS

g

∣∣∣2
(1 − (−1)S cos θ12) +

∣∣aS
u

∣∣2
(1 + (−1)S cos θ12)

]
sin2 θ12

1,3De 1
2

(∣∣∣aS
1g

∣∣∣2
δS0 +

∣∣aS
1u

∣∣2
δS1

)
+ 2

3

(∣∣∣aS
3g

∣∣∣2
+

∣∣aS
3u

∣∣2
)

− 1
3 (−1)S

(∣∣∣aS
3g

∣∣∣2 − ∣∣aS
3u

∣∣2
)

+

[
1
6

(∣∣∣aS
1g

∣∣∣2
δS0 +

∣∣aS
1u

∣∣2
δS1

)
+ (−1)S

(∣∣∣aS
3g

∣∣∣2 − ∣∣aS
3u

∣∣2
)]

cos2 θ12

+ 2
3

(∣∣∣aS
2g

∣∣∣2
δS0 +

∣∣aS
2u

∣∣2
δS1

)
sin4 θ12 − 2

√
2

3 Re
(
aS

2ga
S∗
3g δS0 + aS

2ua
S∗
3u δS1

)
sin2 θ12

+ 4
√

2
3 Re

(
aS

1ga
S∗
3g δS0 + aS

1ua
S∗
3u δS1

)
cos θ12

− 2
3 Re

(
aS

1ga
S∗
2g δS0 + aS

1ua
S∗
2u δS1

)
cos θ12 sin2 θ12

1,3Fo (1 + (−1)S cos θ12)

[∣∣∣aS
1g

∣∣∣2 ( 2
5 + cos2 θ12 − (−1)S cos θ12

)
+ 1

15

∣∣∣aS
2g

∣∣∣2
(4 + cos2 θ12 + (−1)S cos θ12) − 2 Re

(
aS

1ga
S∗
2g

)
(1 − (−1)S3 cos θ12)

]

(1 − (−1)S cos θ12)
[
− ∣∣aS

1u

∣∣2 ( 2
5 + cos2 θ12 + (−1)S cos θ12

)
+ 1

15

∣∣aS
2u

∣∣2
(4 + cos2 θ12 − (−1)S cos θ12) − 2 Re

(
aS

1ua
S∗
2u

)
(1 + (−1)S3 cos θ12)

]
1,3Fe 1

15 sin2 θ12

[
4

(∣∣∣aS
1g

∣∣∣2
+

∣∣aS
1u

∣∣2
)

+

(∣∣∣aS
2g

∣∣∣2
δS1 +

∣∣aS
2u

∣∣2
δS0

)
(5 + 3 cos2 ϑ12)

− (−1)S
(∣∣∣aS

1g

∣∣∣2 − ∣∣aS
1u

∣∣2
)

(5 cos2 ϑ12 − 1) + 16 Re
(
aS

1ga
S∗
2g δS1 + aS

1ua
S∗
2u δS0

)
cos ϑ12

]

2.2. Ne 1s−1 case

DA decay of the Ne 1s−1 2Se vacancy state is possible to the three groups of final states in
triply charged ions: 2s−22p−1 2Po, 2s−12p−2 2Se,2De,2,4Pe and 2p−3 2Po, 2Do,4So. The last
state 4So cannot be populated by DA decay since the corresponding continuum state So does
not exist: two electrons with �1 = �2 can only be in an even state. Since the initial state
has Se symmetry, according to the selection rules (9) the final continuum state of the two
Auger electrons has the same symmetry and the same parity as the final ion. Therefore,
there is no summation over L in expression (6), while the summation over S persists. For
each transition the shape of the pattern is determined by one of the lines in table 1
and is similar to that presented in figure 1. If experimental resolution is not sufficient
to resolve the final ionic terms, the angular distribution is an incoherent sum of the
contributions from each ionic term with weights which should be determined from a model
calculation.
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2.3. Ar 2p−1 case

DA decay of the Ar 2p−1 2Po state is also possible to the three groups of final terms similar to
those in Ne but for the configurations 3s−23p−1, 3s−13p−2 and 3p−3. Here, however, according
to selection rules (9) for each final ionic term several LSπ continuum states contribute. For
example, in the DA decay L3–M1M23M23 to the final ionic state 2De the following continuum
states contribute: 1,3Po, 1,3Do and 1,3Fo and the angular distribution is a weighted sum of
expressions in the corresponding lines from table 1.

2.4. Angular patterns for the shake-off mechanism of double Auger decay

The energies of the emitted Auger electrons in DA decay are continuously distributed, and
the probability of emission drastically depends on the energy sharing ε1/ε2. As in the case
of DPI, the energy distribution in DA decay shows a strong sharp maximum in the domain
ε1 
 ε2 and a flat minimum at equal energy sharing ε1 = ε2. This behaviour of the energy
distribution was predicted theoretically (Amusia et al 1992) and confirmed experimentally
(Hindi et al 1996, Viefhaus et al 2002). It is naturally explained within the second order of the
many-body perturbation theory (Amusia et al 1992) which includes all the main mechanisms
of DA: ‘knock-out’ (the first Auger electron scatters and knocks out the second electron),
‘shake-off’ and the ground-state-correlation mechanism. Near the maximum (ε1 
 ε2) the
main contribution comes from the shake-off mechanism of DA decay, in which the fast electron
is emitted in a normal Auger process and the slow electron is shaken off by a sudden change
in the ionic potential. For the case of the Ne K–L1L1L23 transition, Amusia et al (1992)
calculated the angular distribution within the shake-off model at ε1 
 ε2 and compared the
results with more accurate MBPT calculations. Although the details of the two distributions
are different, the qualitative behaviour is similar. Therefore, it is useful to consider the angular
distributions in the DA process within the shake-off model.

In the simple version of the shake-off model, the slow electron undergoes monopole
transition and therefore its orbital quantum number does not change in the decay. Furthermore,
in the shake-off approximation the reduced matrix elements of DA decay may be presented as

〈αf Lf , (ε1�1, ε2�2)L‖V S‖αiLi〉 = 〈αf Lf , ε1�1‖V S‖αiLi〉〈ε2�2|ni�i〉. (19)

Here 〈ε2�2|ni�i〉 is an overlap integral between single-electron continuum wavefunction of the
shaken off electron and the wavefunction of this electron in the initial bound state. As argued
above �2 = �i . The latter condition limits the summations in equation (8) to only a few terms
and allows one to simplify the parametric forms of the probabilities FSL. For example, it is
easy to show that in the shake-off approximation the angular correlation function for the Ne
1s−1 → 2s−22p−1 2Po transitions reduces to A1 + A2 cos θ12, where A1 and A2 are constants.
This function describes the dash-dotted curve in figure 6 (case 1) by Amusia et al (1992). The
angular correlation for the transitions to the 2p3 2Po should have the form A1 + A2 cos2 θ12,
while for the 2p3 2Do final state it should be A sin2 θ12.

3. Circular dichroism in the double Auger decay

Until now we have considered DA decay of an unpolarized initial vacancy state. However,
for the vacancy angular momentum �i > 0, sub-states with different projections of angular
momentum may be non-statistically populated during the ionization process. Thus the ionic
state may be polarized: aligned or oriented. We recall that the vacancy state is called aligned if
the magnetic sub-states with opposite projections, |li , mi〉 and |li ,−mi〉, are equally populated,
while in a more general case of unequal population of such sub-states the vacancy state is called
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oriented. The aligned p-vacancy is described by the alignment parameter A20; the oriented
p-vacancy is described by the alignment parameter A20 and the orientation parameter A10.
In particular, the vacancy produced by unpolarized or linearly polarized light is aligned; it is
oriented if produced by circularly polarized light. It is known that the alignment produced by
photoionization is generally very small (Berezhko et al 1978, Kleiman and Lohmann 2003).
For example, for Ar 2p photoionization the alignment A20 is smaller than 0.07 for all photon
energies from threshold up to 300 eV. In contrast, the orientation is rather large, |A10| ∼ 0.5.
Therefore, in the following we ignore the alignment and consider the effect of orientation on
the angular distribution of the ejected electrons in DA decay. This effect is usually revealed
in the circular dichroism study, i.e. measuring the difference between angular distributions
excited by right and left circularly polarized light. The phenomenon of circular dichroism in
two electron emission from atoms has been predicted theoretically for direct DPI (Berakdar
and Klar 1992, 2001, Berakdar et al 1993), for two-step DPI (Schmidt 1994, Kabachnik and
Schmidt 1995) and recently has been revealed experimentally for both processes (Soejima et al
1996, 1999, Viefhaus et al 1996, Mergel et al 1998). If DA decay is induced by photoionization
with circularly polarized light, we can also expect the difference in angular distributions for
right and left circularly polarized light, i.e. circular dichroism in DA process: a circular
polarization of the photon results in an orientation of the produced vacancy state, which in
turn influences the DA angular distributions. Note that in non-coincidence measurements the
circular dichroism is zero: the angular distribution of emitted Auger electrons is not sensitive
to circular polarization (see, e.g., Balashov et al (2000)).

To derive the circular dichroism, consider the probability of DA decay for the case of a
non-equal population of the initial |αiLiMLi

〉 magnetic substates. We omit the spin variables in
order to shorten the formulae and insert the spin index only in the final result. The initial state
can be characterized by the density matrix

〈
αiLiMLi

∣∣ρi
∣∣αiLiM

′
Li

〉
or by a set of corresponding

statistical tensors (state multipoles) ρkq(Li, Li) (Blum 1996, Balashov et al 2000):〈
αiLiMLi

∣∣ρi
∣∣αiLiM

′
Li

〉 =
∑
kq

(−1)
Li−M ′

Li

(
LiMLi

, Li−M ′
Li

∣∣kq
)
ρkq(Li, Li). (20)

The probability of two-electron emission may be written as a trace of the properly normalized
final-state density matrix ρf

dW

dε1 dn1 dn2
= Trρf = Tr(VρiV +)

= 2π
∑

MLf
MLi

M ′
Li

MMLi
MLf

〈
αiLiMLi

∣∣ρi
∣∣αiLiM

′
Li

〉
M∗

M ′
Li

MLf
. (21)

Substituting here equations (2) and (20), performing necessary summations and accounting
for the spin normalization factor, we obtain

dW

dε1dn1 dn2
= 2πŜ−2

i

∑
kS

∑
LL′ML

(−1)ML+Lf +Li+kL̂L̂′(LML,L′−ML|k0)

×
{

L L′ k

Li Li Lf

}
ρk0(Li, Li)fSLML

f ∗
SL′ML

, (22)

where we used the standard notations for the Wigner 6j -symbol and directed the z-axis along
the initial-state polarization (direction of the primary photon beam). For the non-polarized
initial state only k = 0 contributes and expression (22) reduces to (6).

Equation (22) is written for the DA decay of an arbitrary polarized (along z-axis) initial
state, characterized by the statistical tensors ρk0(Li, Li). In photoionization by circularly
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polarized light, however, in the dipole approximation the ionic state may only be oriented
(k = 1) or aligned (k = 2). Since we ignore the alignment the only tensor which characterizes
the anisotropy of the initial state is the orientation tensor ρ10(Li, Li) which is proportional to
the P3 Stokes parameter describing the circular polarization of the photon beam (Berezhko
et al 1978). The change from right to left circular polarization means the change of signs of
P3 and ρ10(Li, Li). Circular dichroism in the angular distribution (CDAD) is defined as the
difference between the angular distributions produced by right (P3 = +1) and left (P3 = −1)

circularly polarized light, therefore

CDAD ≡
(

dW

dε1 dn1 dn2

)
+

−
(

dW

dε1 dn1 dn2

)
−

= 4πŜ−2
i ρ10(Li, Li)

∑
S

∑
LL′ML

(−1)ML+Lf +Li+1L̂L̂′(LML,L′−ML|10)

×
{

L L′ 1

Li Li Lf

}
fSLML

f ∗
SL′ML

, (23)

where ρ10(Li, Li) is taken for P3 = +1.
Since the initial state with Li = 0 cannot be oriented, the CDAD in this case vanishes.

Therefore the CDAD for DA decay of Ne 1s−1 must be zero. Interestingly, equation (23)
for the CDAD contains interference terms with different orbital angular momenta L of the
electron pair, while different S and ML contribute incoherently. Expression (23) may be used
for calculations of the CDAD or for the qualitative analysis. Consider, for example, DA decay
of the Ar 2p−1 vacancy to the 3p−23s−1 2Se state with emission of a pair of electrons in the
state 1,3Po. Here only L = 1 contributes, and the CDAD (23) reduces to

CDAD = 2π
√

2Ŝ−2
i ρ10(1, 1)

∑
S

(|fS11|2 − |fS1−1|2). (24)

Note that the state with ML = 0 does not contribute due to the vanishing Clebsch–Gordan
coefficient in (23). Substituting the expression (14) into (24) and using (16), we obtain

CDAD = 2π
√

2Ŝ−2
i ρ10(1, 1)

(∑
S

(−1)S
∣∣aS

g

∣∣∣∣aS
u

∣∣ sin 
S
gu

)
sin θ1 sin θ2 sin(φ1 − φ2). (25)

Here θ1,2 and φ1,2 are the polar and azimuthal angles of the electron emission and 
S
gu is a

phase difference between aS
g and aS

u amplitudes. The CDAD depends not only on the mutual
angle of the outgoing electrons θ12 (through the amplitudes aS

g,u) but also on the individual
angles of emission with respect to the photon beam direction. Expression (25) is very similar
to the expression for the CDAD for He DPI (see, e.g., Briggs and Schmidt (2000)). The main
difference is that for the DA decay both singlet and triplet states of the two-electron continuum
contribute. Using (25) one can easily check that all kinematical properties of the CDAD in
two-electron emission, derived for the DPI by Berakdar and Klar (1992), are the same for the
DA decay: CDAD vanishes (i) when electrons are emitted in the plane containing the direction
of the photon beam or (ii) when n1 = ±n2 or (iii) when ε1 = ε2. (In the latter case aS

u = 0
and consequently CDAD = 0.)

Similarly, expressions for the CDAD can be written for other transitions in Ar. However,
due to interference of several L these expressions are too lengthy and complicated to be
presented in this paper. All the kinematical properties of CDAD discussed above are also
fulfilled for other transitions. A common feature of all expressions is also the fact that
contributions of different total spins of the pair (S) are incoherent and only the imaginary
part of the products of amplitudes, Im

(
aS

g aS∗
u

) = ∣∣aS
g

∣∣∣∣aS
u

∣∣ sin 
S
gu, enters the final result. For
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example, the CDAD should vanish for the transition Ar 2p−1 → 3p−3 4So: the two Auger
electrons are emitted in the state 3Pe and, according to table 1, the amplitude aS is either
symmetric with respect to permutations (for S = 1) or antisymmetric (for S = 0). The
product of the amplitudes is always zero.

Concluding this section we note that in order to observe the dichroism in the DA decay, the
experiment should have sufficiently high resolution otherwise contributions of different final
triply-ionized states may cancel each other. Besides, as it follows from general consideration
(Berakdar and Klar 1992), the CDAD vanishes if one of the electrons is an s-electron. In the
considered case of Ar 2p−1 decay, for example, a large contribution comes only from such
pairs where one electron has � = 0. This is valid at least in the shake-off approximation
(see discussion in the preceding section) and therefore is valid for highly asymmetric energy
sharing (ε1 
 ε2). This tendency also persists closer to equal energy sharing, thus diminishing
the possible dichroism. According to our analysis of the shake-off approximation, the CDAD
also vanishes at very high energy of one of the electrons. This is consistent with the dynamical
behaviour of circular dichroism in DPI at very high energies (Berakdar 1998). The linear
dichroism which was observed in He DPI (Soejima et al 1999) and which in the case of DA
decay is connected with the alignment of the vacancy, can hardly be observed in experiment:
the effect should be very small due to the small alignment.

4. Conclusions

We have analysed the general expression for the angular distributions of DA decay and
suggested comparatively simple parametric forms of the angular correlation functions for
various final electron states. The parametrization, however, is more complicated than for DPI
since in all cases at least two sets of gerade and ungerade amplitudes describing singlet and
triplet states of the two continuum electrons are necessary. We have found that within the
conventional two-step description of the Auger process, when the decay of the ionic state is
considered to be independent from its production stage, many properties of the DA emission
are similar to the DPI case. All selection rules by Maulbetsch and Briggs (1995) derived from
the symmetry properties of the two-electron wavefunction are fulfilled for DA decay. Also, the
geometrical properties of the DPI angular distributions derived by Berakdar and Klar (1992)
are appropriate for the DA process.

For an unpolarized initial state, different orbital angular momenta of the pair contribute
incoherently to the angular correlation function in DA while for an oriented state their
interference is important. In general, the angular correlation between two emitted electrons
depends on the orientation of the initial state that may be observed as a circular dichroism in
the photoinduced DA process. However, reliable calculations within an ab initio model are
necessary in order to estimate the value of the effect.
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and very useful discussions and to A Meremianin for sending us his dissertation. We are
indebted to J Berakdar for careful reading of the manuscript and useful suggestions. The
authors acknowledge the hospitality and financial support of the Fritz-Haber Institute of MPG,
Berlin. NMK acknowledges the hospitality and financial support of the Max-Planck Institut
für Mikrostrukturphysik, Halle.



1890 A N Grum-Grzhimailo and N M Kabachnik

Appendix. Expressions for amplitudes

Below, we give partial wave expansions for the amplitudes aS
g and aS

u used in table 1 for various
orbital angular momentum and parities of the emitted electron pair. We used the corresponding
expressions from Manakov et al (1996) corrected according to Meremianin (1998). In the
formulae of this appendix, indices j and n take values 1 and 2,

2S+1Se:{
aS

g

aS
u

}
=

{
δS0

δS1

}
1

4π

∑
�

(−1)��̂P�(cos θ12)〈αf Lf , (ε1�, ε2�) Se‖V S‖αiLi〉. (A.1)

2S+1Po:

aS
g = 1√

2

(
bS

1 + (−1)SbS
2

)
, aS

u = 1√
2

(
bS

1 − (−1)SbS
2

)
, (A.2)

bS
j = 1

4π

∑
�1�2

1√
�max

(−1)�j +1P
(1)
�j

(cos θ12)〈αf Lf , (ε1�1, ε2�2)P
o‖V S‖αiLi〉. (A.3)

2S+1Pe:{
aS

g

aS
u

}
=

{
δS1

δS0

}
i

4π

∑
�

(−1)�+1

[
2� + 1

�(� + 1)

] 1
2

P
(1)
� (cos θ12)〈αf Lf , (ε1�, ε2�)P

e‖V S‖αiLi〉.

(A.4)
2S+1Do:

aS
g = 1√

2

(
bS

1 + (−1)SbS
2

)
, aS

u = 1√
2

(
bS

1 − (−1)SbS
2

)
, (A.5)

bS
j = i

4π

∑
�1�2

(−1)�1 [�1�2(�max + 1)]−
1
2 P

(2)
�j

(cos θ12)〈αf Lf , (ε1�1, ε2�2)D
o‖V S‖αiLi〉.

(A.6)
2S+1De:{

aS
1g

aS
1u

}
=

{
δS0

δS1

} ∑
�1�2

[
C1(�1, �2)δ�1�2P

(1)
�1

(cos θ12) − 2C2(�1, �2)P
(2)

(�1+�2)/2(cos θ12)
]

×〈αf Lf , (ε1�1, ε2�2)D
e‖V S‖αiLi〉, (A.7){

aS
2g

aS
2u

}
=

{
δS0

δS1

}∑
�

C1(�, �)P
(2)
� (cos θ12)〈αf Lf , (ε1�, ε2�)D

e‖V S‖αiLi〉, (A.8)

aS
3g = 1√

2

(
bS

1 + (−1)SbS
2

)
, aS

3u = 1√
2

(
bS

1 − (−1)SbS
2

)
, (A.9)

bS
j =

∑
�1�2

C2(�1, �2)δ�2�1±2P
(2)
�j

(cos θ12)〈αf Lf , (ε1�1, ε2�2) De‖V S‖αiLi〉, (A.10)

C1(�, �) = (−1)�+1

4π

[
6(2� + 1)

(2� − 1)�(� + 1)(2� + 3)

] 1
2

, (A.11)

C2(�1, �2) = (−1)�1

4π
[�max(2�max − 1)(�max − 1)]−

1
2 . (A.12)
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2S+1Fo:

aS
ng = 1√

2

(
bS

1n + (−1)SbS
2n

)
, aS

nu = 1√
2

(
bS

1n − (−1)SbS
2n

)
, (A.13)

bS
j1 =

∑
�1�2

C(�1, �2)(−1)jP
(3)
�j

(cos θ12)〈αf Lf , (ε1�1, ε2�2)F
o‖V S‖αiLi〉, (A.14)

bS
12 = −

∑
�1�2

C(�1, �2)

(
3P

(3)
�2+1(cos θ12) − 1

2
(�2 − �1 + 3)(�1 + �2 + 4)P

(2)
�2

(cos θ12)

)

×〈αf Lf , (ε1�1, ε2�2) Fo|V S |αiLi〉, (A.15)

bS
22 =

∑
�1�2

C(�1, �2)

(
3P

(3)
�1+1(cos θ12) − 1

2
(�1 − �2 + 3)(�1 + �2 + 4)P

(2)
�1

(cos θ12)

)

×〈αf Lf , (ε1�1, ε2�2) Fo‖V S‖αiLi〉. (A.16)

2S+1Fe:

aS
ng = 1√

2

(
bS

1n + (−1)S+1bS
2n

)
, aS

nu = 1√
2

(
bS

1n − (−1)S+1bS
2n

)
, (A.17)

bS
j1 = i

∑
�1�2

C(�1, �2)P
(3)
�j

(cos θ12)〈αf Lf , (ε1�1, ε2�2) Fe‖V S‖αiLi〉, (A.18)

bS
12 = i

∑
�1�2

C(�1, �2)

(
1

4
(�1 − �2 + 2)(�1 + �2 + 3)P

(2)
�1

(cos θ12) − P
(3)
�1+1(cos θ12)

)

×〈αf Lf , (ε1�1, ε2�2) Fe‖V S‖αiLi〉, (A.19)

bS
22 = i

∑
�1�2

C(�1, �2)

(
1

4
(�2 − �1 + 2)(�1 + �2 + 3)P

(2)
�2

(cos θ12) − P
(3)
�2+1(cos θ12)

)

×〈αf Lf , (ε1�1, ε2�2) Fe‖V S‖αiLi〉, (A.20)

C(�1, �2) = 6(−1)�2+1

π

[
10(2�1 + 1)(2�2 + 1)(�1 + �2 − 3)!

(�1 − �2 + 3)!(�2 − �1 + 3)!(�1 + �2 + 4)!

] 1
2

. (A.21)
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Cvejanović S and Reddish T J 2000 J. Phys. B: At. Mol. Opt. Phys. 33 4691
Heimann P A et al 1987 J. Phys. B: At. Mol. Phys. 20 5005
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