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Abstract
We have studied angular correlations between resonant Auger electrons and
successive second-step Auger electrons emitted in a cascade decay after
photoexcitation of resonances 3d−1

5/25p in Kr and 4d−1
5/26p in Xe. Two

spectrometers were used for the angle-resolved detection of the two electrons
in coincidence. Angular correlations for several pairs of strong lines have
been measured in both atoms. The experimental results are compared with
multiconfiguration Dirac–Fock calculations which include electron correlations
in the initial, intermediate and final states of the cascade. In general, good
agreement between experiment and theory is obtained.

1. Introduction

Electronic decay of core-excited atomic resonances has been intensively studied during the
last decade (see review by Armen et al (2000) and references therein). Recent developments
of synchrotron radiation sources contribute to the progress of these studies. The interest in the
resonant Auger processes stems partly from the fact that electron–electron correlations play
a decisive role in formation of the resonant Auger spectrum. In particular, the low-energy
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part of these spectra has attracted interest because the majority of the low-energy transitions
may lead also to highly excited ionic states with more than two open subshells. Owing to
such shell structure most of these states are strongly correlated and hence require a mixture of
many configurations in order to achieve an appropriate theoretical description. These states
often decay further via Auger electron emission and thus a cascade of Auger transitions may
be formed. The cascade in the resonant Auger decay determines the final charge distribution
of the ions formed in the resonant photoabsorption.

The low-energy part of the electron spectra is often very complicated because it consists of
a large number of partly overlapping lines which arise from the second-step Auger transitions
as well as from the low-energy part of the first-step resonant Auger transitions. In this situation,
coincidence spectroscopy may be successfully used for the proper identification of the lines
and for studying the dynamics of the Auger cascades. A certain decay channel can be separated
and identified by detecting two electrons in coincidence (von Raven et al 1990, von Raven
1992, Alkemper et al 1997). Even more detailed information can be obtained by measuring
the angular correlations between the successively emitted electrons in the Auger cascade
(Kabachnik 1997). Angle-resolved Auger-electron–Auger-electron coincidence experiments
(Becker and Viefhaus 1996, Ueda et al 1999a, 2001, Wehlitz et al 1999, Turri et al 2001)
have demonstrated that this technique provides a powerful method for studying both the line
structure and dynamics of cascade Auger processes. A resonant state excited by a linearly
polarized photon is aligned along the direction of the light polarization. The alignment causes
an anisotropic angular distribution of the emitted resonant Auger electrons. Furthermore, the
alignment is partly transferred to the intermediate ionic state populated in the first decay (see,
e.g., Kabachnik et al 1999). Hence, the second-step Auger emission should also be anisotropic.
Measurements of the angular distributions of the first- and second-step Auger electrons yield
the anisotropy parameters β characterizing the emissions. If both electrons are detected in
coincidence, then the angular distribution of the second electron is determined not only by
the transferred alignment that is originally caused by the photon, but also by the alignment
which appears as a result of emission of the first electron in a certain direction. The interplay
between these two sources of anisotropy makes the angular correlation function much more
complicated than the standard dipole-type angular distribution.

Recently we have published a series of measurements for spectra and angular distributions
of the first- and second-step Auger emissions in the cascades following the resonant
photoexcitations of rare gas atoms (Ueda et al 1999b, 2000, 2001, Yoshida et al 2000, Kitajima
et al 2001, 2002). These measurements revealed strong lifetime interference effects in the
Auger electron angular distributions as well as significant effects of configuration interaction.
For resonantly excited argon, we also reported an angular correlation measurement following
a 2p → 4s excitation (Ueda et al 1999a, 2001) which helped to realize the so-called complete
experiment for the resonant Auger decay, i.e. the experimental determination of the transition
amplitudes and their phase differences (Ueda et al 1999a). In this paper, we report the results
of angular correlation measurements in Auger cascades in Kr and Xe following the resonant
excitation of the 3d−1

5/25p and 4d−1
5/26p states, respectively.

2. Experimental details

Details of the experimental setup and procedure have been described elsewhere (Ueda et al
2001) and thus only a brief account is given. The measurements were carried out at the Photon
Factory, a 2.5 GeV synchrotron radiation facility in Japan. The beamline employed was the
soft x-ray undulator beamline 16B where the 24 m spherical grating monochromator was
installed (Shigemasa et al 1998). The photon energies used were 91.20 eV for the 3d5/2 → 5p
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Figure 1. Experimental geometry.

excitation of Kr and 65.11 eV for the 4d5/2 → 6p excitation of Xe. In both cases the photon
bandwidths were set to ∼0.2 eV. The degree of linear polarization of the incident light was
estimated to be Plin = 100+0

−3% (Ueda et al 2001).
The experimental apparatus employed has been described elsewhere (Shimizu et al 1998).

In the interaction region the focused photon beam was merged with an effusive gas beam.
Figure 1 shows schematically the experimental geometry. The reaction plane was perpendicular
to the photon beam. The first spectrometer was mounted on a turntable, whose axis of rotation
was aligned to coincide with the incident light beam,and detected the resonant Auger electrons.
The second spectrometer was set in such a way that it detected the electrons in the direction
perpendicular to the linear polarization axis of the incident light, and detected the second-step
Auger electrons. The energy bandwidths of these analysers were set to 0.2 eV. The coincidence
rate between the first- and second-step electrons was measured as a function of the detection
angle of the first-step resonant Auger electrons relative to the linear polarization axis of the
incident light. The false coincidence rate was in general significantly smaller (typically �10%)
than the true coincidence rate, and only the true coincidence rate was used in the analysis by
subtracting off the false coincidence background. In order to remove the effect of the fluctuation
of the coincidence counting rates as a function of time, we normalized the coincidence counts
by the corresponding electron counts as detected by fixed analyser.

3. Theory and calculations

We assume that photoexcitation and electronic decay of a resonance and the following Auger
decay of the ion can be considered as proceeding in a stepwise manner (Kabachnik 1997). This
implies that well defined intermediate states exist with certain angular momenta and parity. A
photoexcited resonant state |J0〉 decays first to the intermediate state |J1〉 (or group of states)
with emission of a resonant Auger electron (first-step emission). Then the intermediate ionic
state decays further to the final state |J2〉 of the doubly ionized ion by emission of the second-
step Auger electron. In all cases which are considered in this paper, the resonant state, i.e. the
initial state of the first-step Auger decay, is an isolated resonance. After the first decay, a few
intermediate states of the ion are populated. These intermediate states may partly overlap due
to the lifetime width. In describing the second-step decay, therefore, the lifetime interference
effect must be taken into account (Kabachnik et al 1994, Ueda et al 1999b). The corresponding
expression for the angular correlation between two successively emitted electrons has been
derived in our recent paper (Ueda et al 2001) on the basis of the general formalism (Kabachnik
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et al 1999, Balashov et al 2000). Below we reproduce the basic expressions mainly for
reference.

It is convenient to present the angular correlation function as an angular distribution of
the second-step Auger electrons given that the first-step Auger electron is emitted in a certain
direction n1 ≡ {ϑ1, ϕ1}:
W (n1,n2) = c

4π

∑

k2q2 J1 J ′
1

Ak2(J1, J ′
1; J2)ρk2q2(J1, J ′

1; n1)γJ1 J ′
1
(4π)1/2k̂−1

2 Yk2 q2(n2). (1)

Here Ykq (n) are spherical harmonics and factor γJ1 J ′
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density matrix describing the interfering intermediate states
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is the energy splitting of the overlapping states with total angular
momenta J1 and J ′

1 which are populated after the first decay; �J1 J ′
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= 1
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) with �J1

being the total width of the level J1. The normalization constant c in equation (1) is irrelevant
to the considered angular distributions. An alternative expansion in terms of bipolar harmonics
was used by Kabachnik (1992), Schmidt (1997) and Turri et al (2001).

The generalized anisotropy coefficients Ak2(J1, J ′
1; J2) can be expressed in terms of

the Auger amplitudes 〈J2, l2 j2‖V ‖J1〉, which characterize the second-step Auger decay
(Kabachnik et al 1994):
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}
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2‖V ‖J ′
1〉∗. (3)

Here we use standard notation for the Clebsch–Gordan and Wigner 6 j coefficients: Ĵ ≡√
2J + 1; l2 and j2 are the orbital and total angular momenta of the second-step Auger electron,

respectively.
The differential statistical tensors for the intermediate states ρk2q2(J1, J ′

1; n1) describe
their anisotropy when the first electron is detected in direction n1:

ρk2 q2(J1, J ′
1; n1) =

∑

k0q0k1q1

(4π)1/2k̂2 Ĵ0 Ĵ −1
1 (k1q1, k2q2|k0q0)ρk0q0(J0, J0)

× Yk1q1(n1)Bk1k2k0(J0; J1, J ′
1). (4)

Here ρk0q0(J0, J0) are the statistical tensors describing the polarization state of the resonance
|J0〉. When it is excited from the closed-shell ground state by linearly polarized light (the z-axis
is chosen along the light polarization),only two components are non-zero: ρ00(J0, J0) = 1/

√
3

and ρ20(J0, J0) = −√
2/3. The factors Bk1k2k0(J0; J1, J ′

1) are given by the relation (Kabachnik
et al 1999)
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where standard notation for the Wigner 6 j and 9 j coefficients is used and 〈J1, l1 j1‖V ‖J0〉
denotes the decay amplitude which describes the first-step resonant Auger transition from the
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initial state |J0〉 to the intermediate state |J1〉 by emission of an electron with the orbital and
total angular momenta l1 and j1, respectively.

Due to parity conservation in both decays the values of k1 and k2 are even. Besides,
k2 � 2J1. In the particular cases considered below,the maximum value of the angular momenta
of the intermediate states is J1 = 5/2 and thus the summation over k2, q2 in equation (1)
is limited by the conditions k2, q2 � 4. For the chosen geometry of the experiment (see
figure 1) and with the z-axis directed along the light polarization, we have n1 = {ϑ1, 0} and
n2 = { 3π

2 , 0}. Then, from the properties of spherical harmonics it follows that in the given
geometry q1 and q2 are both even.

Since in photoabsorption the rank of the statistical tensor ρk0 q0(J0, J0) is limited by k0 � 2,
it follows from the properties of the Clebsch–Gordan coefficients in equation (4) that k1 � 6.
Therefore, the angular distribution (1) with (4) contains even spherical harmonics up to the
sixth order and, in the particular geometry of figure 1, may be expressed in the following form:

W (ϑ1) =
3∑

i=0

a2i cos(2iϑ1). (6)

The coefficients a2i are determined by Ak2 and Bk1k2k0 which can be evaluated according to
equations (3) and (5) in terms of the Auger amplitudes.

The Auger amplitudes of the first- and second-step transitions have been calculated within
the multiconfiguration Dirac–Fock (MCDF) method. Since the details of the computations
and, in particular, the choice of the configuration state functions (CSFs) have been discussed
in our previous investigations for Kr and Xe (Kitajima et al 2001, 2002), only a brief account
will be given in the following. The bound state wavefunctions have been calculated using
the relativistic atomic structure code GRASP92 (Parpia et al 1996). The initial resonant
states 3d−1

5/25p in Kr and 4d−1
5/26p in Xe are well described within the single (non-relativistic)

configuration approximation. The intermediate ionic states and the final states of the doubly
charged ions exhibit a strong mixing of configurations. In order to describe the intermediate
states, we include all CSFs with total angular momenta J = 1/2, . . . , 7/2 from ns1np5(n +1)p
configuration as well as the J = 1/2 and 3/2 levels from ns0np6(n +1)p and ns2np3nd(n +1)p
configurations (n = 4 for Kr and 5 for Xe), as in our previous studies (Kitajima et al
2001, 2002). A total of 194 CSFs constitute the basis of the wavefunction expansion of the
intermediate state. The final states of the cascade were obtained in a basis of 106 CSFs with
angular momenta J = 0, 1 and 2 including the four configurations ns1np5, ns2np4, ns2np2nd2

and ns2np2(n + 1)p2.
The continuum wavefunctions were calculated by solving the Dirac–Fock equations in

the static field of the final bound state (for each transition) including the exchange interaction
with the bound electrons. Both these continuum orbitals as well as the Auger amplitudes were
obtained using the program RATIP (Fritzsche 2001). Once the amplitudes were known the
coefficients Ak2(J1, J ′

1; J2), equation (3), and Bk1k2k0(J0; J1, J ′
1), equation (5), were calculated

by means of the RACAH package (Fritzsche 1997, Fritzsche et al 2001) for each of the selected
cascades of the Auger transitions and finally the angular correlation functions were obtained.

4. Results and discussion

4.1. Auger cascades in Kr

The angular correlations have been measured for the following cascades of Auger transitions
in Kr (corresponding kinetic energies of electrons are shown in parentheses):
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(a) 3d−1
5/25p (J0 = 1) → 4s14p5(1P)5p → 4s24p4 1D2 (lines 43.00 and 8.03 eV);

(b) 3d−1
5/25p (J0 = 1) → 4s14p5(1P)5p → 4s24p4 3P2 (lines 43.00 and 9.85 eV);

(c) 3d−1
5/25p (J0 = 1) → 4s14p5(1P)5p → 4s24p4 3P1 (lines 43.00 and 9.29 eV);

(d) 3d−1
5/25p (J0 = 1) → 4s24p34d(1P)5p → 4s24p4 1D2 (lines 36.74 and 14.26 eV);

(e) 3d−1
5/25p (J0 = 1) → 4s04p6(1S)5p → 4s14p5 3P2 (lines 29.25 and 9.22 eV).

Note that the total spin and orbital angular momentum quantum numbers in the notation 2S+1L
should be considered as only a label since the real states as well as the calculated states are
mixtures of all possible L and S. The experimental results are shown in figure 2, where they
are compared with the calculated angular correlation functions. In general, the agreement is
good.

It is of interest to understand which factors determine the angular correlation pattern,
why the patterns are so different for different transitions, and if it is possible to predict the
patterns on the basis of simple models like a spectator model for the resonant Auger decay
or a pure LS J -coupling model. First, consider the first three cascades (a)–(c). These show
very different angular correlation patterns (see figure 2), although the same intermediate states,
4s14p5(1P)5p2, 2P 2D, are involved. We note that, although several closely lying intermediate
states are populated in these cascades, the transition to the state J1 = 5/2, which may be
denoted as 4s14p5(1P)5p 2D5/2, strongly dominates. In the following qualitative discussion,
therefore, we take into account only this intermediate state.

According to expression (1), the angular correlation function can be considered as
an angular distribution of the second-step Auger electron emission from an anisotropic
intermediate ion produced in the first-step decay. The anisotropy of the ion is determined by two
factors. One is the alignment induced by the photon and partly transferred to the intermediate
ionic state. This alignment is described by the second-rank statistical tensor ρ20(J0, J0) and
refers to the axis determined by the photon polarization. If only this factor was important,
the correlation function would have been of the typical dipole-type shape 1 + β P2(cos ϑ).
However, there is a second source of the anisotropy, namely the alignment produced by
emission of the first-step Auger electron. This alignment exists, even if ρ20(J0, J0) = 0.
It has a natural axis: the direction of the electron emission. The shape of the correlation
pattern in cases (b) and (c) clearly indicate the presence of terms with i > 2 in expansion (6).
This means that the second factor is important. Moreover, the calculations show that the
term proportional to cos(6ϑ) is large. This term can appear only as a result of a combination
of both alignments. Therefore, the anisotropy produced by photoabsorption and by Auger
electron emission are equally important and their interplay determines the anisotropy of the
intermediate ionic state. On the other hand, the angular patterns for transitions (a) and (c) from
the same intermediate state are strikingly different. This illustrates that the intrinsic anisotropy
parameters αk = Ak(J1, J ′

1; J2)/A0(J1, J ′
1; J2), which describe the second-step decay and

characteristic for each particular decay channel, are also important for predicting the angular
correlations.

In the first-step transitions of cascades (a)–(c), the εp and εf Auger electron partial waves
are allowed by the angular momentum and parity conservation laws. Therefore, in general,
the corresponding Auger amplitudes are necessary for the calculations of the anisotropy of
the intermediate ion. However, as was shown by previous calculations (Tulkki et al 1994,
Mursu et al 1998, Kitajima et al 2001), the Auger partial wave εf7/2 strongly dominates for the
transition to the 4s14p5(1P)5p 2D5/2 state considered here. If we suppose that only one partial
wave contributes to the decay (single-channel approximation), then all Bk1k2k0(J0; J1, J ′

1)

coefficients and therefore the statistical tensors of the intermediate state (4) can be evaluated to
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Figure 2. Angular correlation between the resonant Auger emission and the second-step Auger
emission for the Kr transitions (a) 3d−1

5/25p (J0 = 1) → 4s14p5(1P)5p → 4s24p4 1D2;

(b) 3d−1
5/25p (J0 = 1) → 4s14p5(1P)5p → 4s24p4 3P2; (c) 3d−1

5/25p (J0 = 1) → 4s14p5(1P)5p →
4s24p4 3P1; (d) 3d−1

5/25p (J0 = 1) → 4s24p34d(1P)5p → 4s24p4 1D2; (e) 3d−1
5/25p (J0 = 1) →

4s04p6(1S)5p → 4s14p5 3P2. Coincidence rates are plotted as a function of the angle of the
direction of first-step Auger electron relative to the polarization vector whereas the second-step
Auger electron is detected in the direction at 270◦ (see figure 1). The solid curves represent the
results of the MCDF calculation. The dashed and dotted curves correspond to the calculations
with only one partial wave in the first-step emission and MCDF and LS J -coupling approximation
for the second-step transitions, respectively. Theoretical curves are normalized to the same area
limited by the curves.
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Table 1. The calculated intrinsic anisotropy parameters αk for some second-step Auger electron
transitions from the 4s14p5(1P)5p 2D5/2 and 4s04p6(1S)5p 2P3/2 intermediate states of Kr+ ion.
The values have been obtained in the MCDF calculation described in the text and in the LS J -
coupling approximation. The values marked by asterisks have been calculated considering the
d-wave only (see text).

α2 α4

Initial Final
state state MCDF LS J MCDF LS J

4s14p5(1P)5p 2D5/2 4p4 3P2 −0.400 −0.382 −0.583 −1.058
4p4 3P1 −0.686 −0.748 −0.180 0
4p4 1D2 −0.719 0.229∗ −0.052 0.264∗

4s04p6(1S)5p 2P3/2 4s4p5 3P2 0.765 0∗ 0 0

a constant factor without calculation of the Auger amplitudes. We made this calculation with
an additional assumption that the interference of the considered level with its neighbours is
negligible. The latter assumption is justified because the considered transition is much stronger
than those to the neighbouring levels. The angular pattern was then calculated with the αk

parameters taken from our full configuration interaction calculations (see table 1). The results
are shown in figures 2(a)–(c) by the dashed curves. Each curve is normalized to the same
area limited by the curve. The difference from the exact calculation is small. This confirms
that the εf7/2 partial wave is indeed dominant. It also shows that in this case the anisotropy
of the intermediate level is practically independent of any model used for the description of
the resonant and intermediate states because the Auger amplitudes cancel out of the final
expression.

In contrast, the intrinsic anisotropy parameters for the second-step Auger transitions
are strongly model-dependent. In the second step of the considered cascades (a)–(c), only
even partial waves (εs, εd and εg) can contribute. If we assume that the LS J -coupling
approximation is valid for the intermediate and final states, then, in the decays to the 3P
states, (b) and (c), only the d-wave contributes (Kabachnik and Sazhina 1988). The resulting
αk parameters shown in table 1 considerably deviate from our MCDF calculation. A decay to
the 1D final state (a) is described by at least two channels εs and εd even in the LS J -coupling
model and in the single-configuration approximation. The large observed anisotropy may
suggest that the contribution of the d-wave could be significant. However, if we make the
assumption that only the d-wave contributes, the resulting intrinsic parameters are far from
the MCDF results (see table 1) and the angular correlation function shown by dotted curve in
figure 2(a) is far from the experiment. The reason for the large discrepancy of the simple model
and the MCDF calculation is that the intermediate state 4s14p5(1P)5p 2D5/2 is in fact described
by a strong mixture of configurations with the dominant configuration 4s24p34d5p which can
allow the g-wave emission forbidden for the title configuration in the single configuration
approximation. The large contribution of the g-wave changes drastically the αk parameters
and gives rise to a good agreement with experiment.

It is interesting to compare the angular correlations in the cascades (a) and (d) which start
and finish at the same states but proceed through different intermediate states. In case (d) the
first-step transition is a so-called correlation satellite of the transition in (a). The state with
configuration 4s24p34d(1P)5p cannot be populated directly from the resonant state 3d−1

5/25p
since more than two electrons need to participate in the transition. Therefore, the intermediate
state in case (d) is populated due to admixture of the 4s14p5(1P)5p diagram configuration.
This should lead to a strong similarity of the alignment of intermediate states in both cascades.
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The observed (and calculated) difference in angular correlation may be connected only with
the different αk coefficients. In the second-step decay both components of the configuration
expansion participate and thus the Auger amplitudes depend on their relative strength. In
our MCDF calculations for the case (d) the anisotropy parameters of the second-step decay
are α2 = 0.317 and α4 = 0.212. Accidentally, these values are close to those calculated in
LS J -coupling for the case (a) (see table 1). Because of this, the angular correlation function
figure 2(d) is similar to the curve in figure 2(a).

The cascade (e) is different from the first four cascades since it proceeds through the
intermediate state of odd parity and therefore involves partial waves εs and εdin the first-step as
well as in the second-step transitions. The 2P intermediate states can be described by statistical
tensors with maximal rank k2 = 2. Thus k1 � 4 and the terms up to cos(4ϑ1) can appear in
the expansion (6). Within a spectator model, the εd5/2 is the only possible partial electronic
wave in the first-step transition 3d−1

5/25p (J0 = 1) → 4s04p6(1S)5p. Our MCDF calculation
indeed confirms that the d5/2 partial wave strongly dominates. Therefore, we can calculate
the statistical tensors of the intermediate state 2P3/2 in the single-channel approximation, as
we did it for the cases (a)–(c). For the second-step transition to the 3P2 state, the anisotropy
parameter α2 crucially depends on the relative contribution of εs and εd waves. Note that
α4 = 0 in this case. It is interesting to note that α2 = 0 in the LS J approximation if only one
of the partial waves contributes (Kabachnik and Sazhina 1984). The MCDF calculation gives
α2 = 0.765. With this value and with the statistical tensors calculated in the single-channel
(d5/2) approximation we have obtained the result shown by the dashed line in figure 2(e) which
is very close to the full MCDF calculation. For comparison, we show by the dotted line an
analogous result but with α2 = 0. This result corresponds to the LS J approximation with the
dominance of the s- or d-wave. One can see that the latter curve considerably deviates from
the first two. Therefore, as in the cases (a)–(c) above, the angular correlation function is more
sensitive to the anisotropy parameter of the second-step transition than to the description of
the first step where only one partial wave dominates.

Concluding our discussion, we note that the coincidence experiment is much more sensitive
to the details of the description of the second step transition than the corresponding non-
coincidence measurement (Kitajima et al 2001). The explanation of this difference lies in the
fact that the alignment transfer to the intermediate state in the non-coincidence experiment is
very small (Ueda et al 2000) and the resulting anisotropy of the second-step Auger emission
is difficult to measure with the precision which is necessary for determining the intrinsic
parameters αk .

4.2. Auger cascades in Xe

In Xe the following cascades of Auger transitions have been studied (the corresponding kinetic
energies of electrons are shown in parentheses):

(a) 4d−1
5/26p (J0 = 1) → 5s15p5(1P)6p → 5s25p4 1D2 (lines 24.38 and 5.52 eV);

(b) 4d−1
5/26p (J0 = 1) → 5s15p5(1P)6p → 5s25p4 3P2 (lines 24.38 and 7.64 eV);

(c) 4d−1
5/26p (J0 = 1) → 5s05p6(1S)6p → 5s15p5 3P2 (lines 12.99 and 6.86 eV);

(d) 4d−1
5/26p (J0 = 1) → 5s05p6(1S)6p → 5s15p5 3P1 (lines 12.99 and 6.20 eV).

The experimental data as well as the results of calculations are shown in figure 3. One sees that
for xenon the agreement between theory and experiment is still satisfactory,although somewhat
worse than for krypton. Good agreement is obtained for the cascades (a) and (c), while for
(b) and (d) the shape of the experimental curve differs from the calculated one. A possible
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Figure 3. Angular correlation between the resonant Auger emission and the second-step Auger
emission for the Xe transitions (a) 4d−1

5/26p (J0 = 1) → 5s15p5(1P)6p → 5s25p4 1D2;

(b) 4d−1
5/26p (J0 = 1) → 5s15p5(1P)6p → 5s25p4 3P2; (c) 4d−1

5/26p (J0 = 1) → 5s05p6(1S)6p →
5s15p5 3P2; (d) 4d−1

5/26p (J0 = 1) → 5s05p6(1S)6p → 5s15p5 3P1. Coincidence rates are plotted
as a function of the angle of the direction of first-step Auger electron relative to the polarization
vector whereas the second-step Auger electron is detected in the direction at 270◦ (see figure 1).
The curves represent the results of the MCDF calculation.

explanation of the worse agreement between theory and experiment for Xe as compared to
Kr is a higher density of spectral lines in the Xe case which makes it difficult to separate
the lines in the coincidence experiment. The considered cascades in Xe are very similar
to the corresponding cascades in Kr and, hence, our qualitative consideration, as presented
above, remains valid also for xenon. The angular correlation patterns are very sensitive to the
anisotropy parameters of the second-step Auger transitions.

5. Conclusion

The angular correlations between two successively emitted Auger electrons have been
measured for several strong lines in the decay of the photoexcited 3d−1

5/25p resonance in Kr

and the 4d−1
5/26p resonance in Xe. The shape of the angular correlation pattern is determined

by both the transfer of photo-induced alignment and the alignment due to the emission of the
first electron. In the majority of the considered cases, the calculations based on the MCDF
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approach reproduce the experimental results well. We have found that the shape of the angular
patterns is very sensitive to the intrinsic anisotropy parameters of the second-step Auger decay.
The coincidence experiments provide a unique opportunity to study anisotropy of the Auger
transitions in ions, because, in non-coincidence measurements, it is difficult to measure these
parameters due to a very small alignment transfer to the intermediate states.
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